Approximation algorithms for distributed systems
نویسنده
چکیده
Distributed Approximation is a new and rapidly developing discipline that lies at the crossroads of various well-established areas of Computer Science Distributed Computing, Approximation Algorithms, Graph Theory and often, Computational Geometry. This thesis focuses on the design and analysis of distributed algorithms to solve optimization problems that usually arise in large-scale, heavily dynamic, resource constrained networks, e.g. wireless ad-hoc and sensor networks, P2P systems, mobile networks etc. These problems can often be abstracted by variations of wellknown combinatorial optimization problems, such as topology control, clustering etc. Many of these problems are known to be hard (NP-complete). But we need fast and light-weight distributed algorithms for these problems, that yield near-optimal solutions. The results presented in this thesis can be broadly divided in two parts. The first part contains a set of results that obtain improved solutions to the classic problem of computing a sparse “backbone” for Wireless Sensor Networks (WSNs). In graphtheoretic terms, the goal is to compute a spanning subgraph of the input graph, that is sparse, lightweight and has low stretch. The term “low stretch” indicates that in spite of dropping many edges, the distance between any two nodes in the graph is not increased by much. We model WSNs as geometric graphs unit ball graphs, quasiunit ball graphs etc. in Euclidean spaces, as well as in more general metric spaces of low doubling dimension. We identify and exploit a variety of geometric features of
منابع مشابه
Agent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملMinimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs
This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...
متن کاملA Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems
Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...
متن کاملEfficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016